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The Frequency-Domain Transmission Line Matrix
Method—A New Concept

Hang Jin, Member, IEEE, and Riidiger Vahldieck, Senior Member, IEEE

Abstract—A new frequency-domain TLM method is pre-
sented for the frequency selective s-matrix computation of 3- D
waveguide discontinuities. The new approach combines thle
flexibility of the conventional TLM method with the computa-
tional efficiency of frequency-domain methods. The basis fa~r
this new technique is a novel excitation of an impulse train of
sinusoidally modulated magnitude. At any time step, this ex-
citation retains the form of an impulse while its envelop con-
tains the information of the structure at the modulation fre-
quency. Utilizing the diakoptics technique in conjunction with
the new concept of the intrinsic scattering matrix, which relates
the reflected and incident impulses at the exterior branches of
any discontinuity structure, the original electromagnetic field
problem is simplified into a matrix algebra problem, allowing
the use of linear algebra tools to further enhance the compu-
tational efficiency of the algorithm. A variety of structures have
been analyzed in order to check the accuracy of this new ap-
proach and excellent agreement has been observed in all cases.
S-parameters for CPW air-bridges including finite thickness
and conductivity of the metallizations are computed. For the
first time in literature, also the effect of superconductor air-
bridges is analyzed.

I. INTRODUCTION

T HE TLM method is known as a general purpose time-
domain technique suitable for the simulation of wave

propagation phenomena in guided wave structures and
discontinuities of arbitrary shape (i.e., [1]-[10]). In the
three-dimensional TLM method, the space is discretized
by a three-dimensional transmission line network in whiclh
impulses are scattered among the junctions of the trans-
mission lines (nodes) and the boundaries at a fixed time
step. Thus the problem is discretized in both time and,
space and the impulse distribution within the network de-
scribes the evolution of the electromagnetic field.

Although the method is very versatile and useful to pro-
vide a physical picture of the behaviour of the electro-
magnetic field at discontinuities of arbitary shape, it is in
general less effective, compared to frequency-domain
techniques, in characterizing the frequency selective re-
sponse of transmission line structures. There are several
reasons for this. First of all, due to the impulse excitation,
the TLM algorithm involves a theoretically infinite fre-
quency range before, through a Fourier transform, the fre-
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quency range of interest can be selected. This means much
more info&ation is processed than is actually needed in
the design (or analysis). In addition, the TLM algorithm
is an iterative process for solving a system of linear equa-
tions with a coefficient matrix and initial values. This pro-
cedure is naturally slow since many advance matrix al-
gebra techniques (i.e., QR or QL techniques) cannot be
applied and relatively long computer run-times are the re-
sult. Furthermore, the transformation from the time-do-
main into the frequency domain introduces errors which
are not always negligible. The following describes some
of the problems associated with this transformation.

Frequency-Domain Errors: The TLM method is sub-
ject to various sources of error, such as the finite trunca-
tion of the impulses in time or finite discretization in space
and time. This leads to errors, which may be small and
negligible in the timle-domain, but can cause substantial
errors at some frequencies in the frequency domain, be-
cause it is a well known fact that a small error in one of
a pair of Fourier transforms may result in a considerable
error in the other [11]. It is difficult or impossible to de-
termine in advance at which frequencies these errors are
significant, The accuracy of the field amplitude derived
from this procedure and hence the ratio between incident
and reflected fields (s-parameter) may therefore be inac-
curate.

Multi-Mode Problem: The impulse response of the
TLM network contains the entire frequency spectrum, so
that in principle all the modes of the structure can be ex-
cited. After the Fourier transformation of the impulse re-
sponse, the resulting field is obtained as a superposition
of the modes that exist at the frequency at which the Fou-
rier transform is performed. If the structure can support
more than one mode at this frequent y, the resulting ‘field
cannot be separated in fundamental and higher order
modes. This is in particular a problem when open struc-
tures are simulated as discussed below.

The above mentioned. problems are related to potential
error sources when a time-domain method is applied to
frequency selective problems. Thus, limiting the appli-
cation range of the TLM method. Another limitation of
the TLM method is in the treatment of open structures
[12], [13]. Since the TLM method is discretizing space
and time, the space must be of finite volume. To realize
this in practice, the open structure is approximated by
either a closed metallic (magnetic) box of appropriate size
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or absorbing boundaries. The closed metallic (magnetic)
box introduces a large number of unwanted box modes
which are non existent in an open structure, and can not
be separated from the real modes of the structure. Al-
though these modes can be avoided to some extent by
choosing the excitation point where the field of the un-
wanted mode is zero, this will require the a priori knowl-
edge of the field pattern, which is not always possible.
The absorbing boundary on the other hand, is simulating
the open space by absorbing all the incident waves in the
time-domain at that boundary. Unfortunately, there are no
absorbing conditions that meet the requirement of perfect
absorption without increasing the computation time sig-
nificantly, Practically, every absorbing boundary will
produce a few percent of reflection. This may have no
significant effect on the time domain solution, but may
cause unacceptable errors in some frequency components
[12] -[14].

In order to retain the flexibility of the TLM method and
at the same time avoid the problems that occur when
transforming from one domain into another, the fre-
quency-domain TLM (FDTLM) method has been devel-
oped. In this method the space is discretized by the same
transmission line network as in the conventional time-do-
main TLM (TDTLM). However, instead of exciting the
network with a single impulse, an impulse train of sinu-
soidally modulated magnitude is used. At any time step,
this new excitation retains the form of an impulse but its
modulated envelope contains the information of the struc-
ture at a particular modulation frequency. Hence, the fre-
quency information of the system is directly obtained from
the impulse response amplitude rather than through the
Fourier transformation. Since the solution procedure is
essentially carried out in the frequency-domain, this new
method can handle multiple mode structures and take ad-
vantage of the numerous advanced frequency-domain
techniques, such as the diakoptics, to greatly enhance its
computational efficiency.

This paper is organized as follows. Section II gives a
detailed description of the novel excitation used in this
new method. In Section III, the concept of the intrinsic
scattering matrix is introduced, which along with the new
excitation, builds the foundation for this new method. The
algorithm of the FDTLM in the case of 2-D guiding struc-
tures is described in Section IV and for 3-D waveguide
discontinuities in Section V. Numerical results are given
in Section VI to validate this new approach.

II. EXCITATION

One of the differences between time- and frequency-
domain methods is their excitation: Time-domain meth-
ods utilize impulses while frequency-domain methods
employ sinusoidal waves. For example, assuming an in-
put excitation in the TLM network at some branch at time
t = O, the output is an impulse sequence taken at the out-
put branch. With respect to the input and output branches,
the problem can be represented as a general two terminal

(b)

. .-El=-
(c)

Fig. 1. Summary of three possible excitation: (a) Impulse in the time do-
main. (b) Sinusoidal wave in the frequency domain. (c) Impulse sequence
with its magnitude modulated by a sinusoidal wave as used in the FDTLM.

network as shown in Fig. 1(a). The system response in
the time-domain is then contained in the magnitude of the
output impulse sequence. The output voltage at frequency
u is obtained from the Fourier transformation of the im-
pulse response:

co

VOU,(OJ)= ~~1 Z~OU,(kAt) exp (ikuA t) (1)

From which the transmission coefficient is obtained as

Vout(w)
$1 . —

~n(cd) “
(2)

For the same system, the frequency-domain analysis is
based on a sinusoidal excitation (Fig. 1(b)). The transfer
characteristics of the system at a specific frequency is
contained in the amplitude of the output sinusoidal wave.
Without performing a Fourier transform, the transmission
coefficient, S21, is directly obtained from:

(3)
V in

where Vout and V,n are the amplitudes of output and input
sinusoidal waves respectively.

This comparison indicates, that the same TLM network
can be used in the time- as well as in the frequency-do-
main as long as the appropriate excitation is applied. In
other words, the two types of excitation, the impulse and
sinusoidal wave, can be applied simultaneously in the
same TLM network. To prove this point, we employ a
novel excitation in the following approach, which is not
an impulse nor a sinusoidal wave but a combination of
both: an impulse sequence with its magnitude modulated
by a sinusoidal wave as shown in Fig. 1(c). At any time
step, this new excitation retains the form of an impulse
but the modulated amplitude envelope of the impulse se-
quence contains the information of the structure analyzed.
The modulated impulse in Fig. 1(c) can also be regarded
as a continuous waveform, as used in the frequency -de)-
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main, sampled at discrete times for observations. The ad-
vantage of considering a magnitude modulated impulse
sequence, rather than a continuous sinusoidal waveform,
is that the TLM time-domain algorithm still may be usecl
in this new frequency approach whenever necessary, be-
cause at any time step the excitation retains the form of
an impulse. However, due to the sinusoidal modulatior~
frequency, the frequency-domain information is directly
provided. In other words, the sinusoidal impulse excita-
tion establishes a direct connection between the time- ancl
frequency-domain. In the following discussion the mean-
ing of an impulse at any time step actually means, that it
is one of those impulses in the impulse sequence with its
amplitude modulated by a sinusoidal wave.

III. INTRINSICSCATTERINGMATRIX

Consider a space discretized by the TLM network with
N exterior branches connecting the space to the surround-
ing space (Fig. 2). At these exterior branches, incident
impulses, with their magnitude modulated by a sinusoidal
wave as described before, are injected and the reflected
impulses are observed. These reflected impulses, after a,
sufficiently long period of time, would become a modu-
lated impulse sequence with the same modulation fre-
quency as the incident inpulse train. The magnitude of the
reflected impulses are linearly related to that of the inci-
dent impulses, assuming that there are no nonlinear events
taking place within the TLM network. Therefore, the fol-
lowing relationship between incident and reflected im-
pulses holds:

V;= M.Vi
e (4)

where V: and V: are the magnitudes of the incident ancl
reflected impulses at the exterior branches. M is defined
as the intrinsic scattering matrix of the structure. M is
solely determined by the properties of the structure itself
and the modulation frequency and can be derived from the
scattering matrix S of the network and the connection ma
trix C. To derive the intrinsic scattering matrix M, it is
first necessary to classify all the branches in the TLM net-
work into three types: interior, exterior and stub branches.
Interior branches connect the nodes within the network:
while exterior branches connect nodes in the network tcl
the surrounding space. Stub branches are used to repre-
sent a dielectric. This is expressed as

EI=EHNH“)’
where kV:, kV: and kV:, respectively, are the incident
voltage vectors of the interior, exterior and stub branches
at time step k. kV;, kV:, and kV; are the corresponding
reflected voltage vectors. In the next time step k + 1, the
reflected voltages, kV[, will become the incident voltages
at the same branches:

k+,V; = kV;. (6)
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Fig. 2. Space discretized by the TLM network with N.exterior branches
connecting the space to the surrounding space.

For the interior branches, the incident voltages at time
step k + 1 are the reflected voltages of the adjacent inte-
rior branches at the previous time step k. They are related
through the connection matrix C:

k+l~;’=c”k~:. (7)

Since the magnitude of the impulses is modulated by a
sinusoidal wave, the impulse amplitude at time step k +
1 is different from the impulse amplitude at time k by only
a factor exp (itiA t), where At is the time step and o the
modulation frequency. This yields

~+I~j = exp (itiAt) . ~v~ (8a)

Substituting (8) into (6) and (7), one obtains

(9a)

kv;’=7.c.kv: (9b)

where T = exp (– iuA t).

Therefore, from (5) and (9), a relationship can be es-
tablished between kV: and kV::

“ [1 – -y(S1l + TS13 “ G “ S31) “ C]-l

t S22 + ~s23 “ G“ S32} “ kv~ (lo)

where G = (1 – ~S33)–1.
Equation (10) provides an explicit expression for the

intrinsic scattering matrix M in terms of the scattering and
connection matrices of the network. To simplify the equa-
tions, in the following discussion the subscript k for the
time will be omitted.

Normalizing the voltages by the branch impedances

v = y-(1/2 . ~ (11)

whereby Ylj2 is a diagonal matrix with the i th element
Y1f2 and Y.being the admittance of the ith exterior branch.
Substitute’( 11) into (10), yields

v ‘ = y~/2 . ~ . y-(1/2) . VZ. (12)
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The normalized intrinsic scattering matrix m = Y’ ‘z “
M . Y–(l /2’ is symmetrical. This can be verified by con-
sidering that the TLM network is a passive electrical net-
work to which the reciprocity theorem [16] can be ap-
plied.

The intrinsic scattering matrix m fully characterizes the
structure and plays a central role in this new approach. By
establishing the intrinsic scattering matrix, the original
electromagnetic problem is transformed into a matrix al-
gebra problem. Once the intrinsic scattering matrix has
been found, all the properties of the structure, such as the
propagation constant r of the guide connecting two sub-
sequent discontinuities, can be readily computed through
matrix operations. This is the major advantage of this new
approach. Transforming the electromagnetic field prob-
lem into a matrix operation problem, the vast area of nu-
merical techniques in matrix theory is available to en-
hance the computational efficiency of the algorithm.
Furthermore, on the basis of the intrinsic scattering ma-
trix, the diakoptics technique can be easily implemented.
By finding the intrinsic scattering matrix for each sub-
structure, the intrinsic matrix for the entire structure can
be obtained from simple matrix operations. Details of this
procedure for the 2-D and the 3-D problem will be de-
scribed in the following sections.

IV. 2-D GUIDING STRUCTURE

For any guiding structure the intrinsic scattering matrix
m is constructed from a slice of waveguide which contains
only one node in the propagation direction (Fig. 3). For
this case (12) is written as follows:

[::l=m”[::1=[:;::1”[::1’13)
where al and a2 denote the voltage vectors and b 1 and bz
the reflected voltage vectors. Performing the following
variable transformation in (13):

VI = (al + bl); il = (al — bl)

.92 = (a2 + b2); i = (a2 – b2) (14)

leads to

(15)

with il, iz representing the total currents, VI and V2 the
total voltages. The submatrices A, B, C, D can be ex-
pressed by matrices mll, m12, m21, m22:

A = ZZ2 . Z;l

c = –Z;l

(16)

Fig. 3. A shce of waveguide with a length of A: in z direction.

where Z11, ZIZ, Zzl, and ZZZare given as

[1z~, Z12
= [1 – m-’ c [1 + m]. (17)

&, Z22

It is found that matrices A, B, C, D are related in the
following way [17]:

A. B=B” D

C“A=D” C

B. C= A”A–l (18)

Considering that the entire guiding structure can be
viewed as a cascaded composition of many equal slices,
then, according to the definition for propagating modes,
the voltage Vz and current – i2 differfrom VI and i, by
only a constant factor exp ( – rAz). Where Az is the size
parameter, i.e., the length or thickness of each slice in
the propagation direction and I’ is the propagation con-
stant to be determined. Equation (15) can be rewritten as:

exp (– I’Az) “[;l=[::1”[;1‘1’)
or rewriting (19):

B“ il =[e-rAz– A] . VI (20)

(1 – erAz “ D)”il=erAz” C”vl (21)

and multiplying (21) by B and using (18), yields

(1 – erAz “ A)- B-il=erAz”(A” A– l)” V1.

(22)

Substituting (20) into (21) and simplifying leads to

cosh (rAz) . VI = A “ al (23)

Equation (23) is the standard form of an eigenvalue prob-
lem, which can be solved, for example, by the QR fac-
torization method. Notice that the eigenvalue factor
cosh (1’Az) in (23) is an even function of IT, meaning that
each eigenvalue of (23) leads to a pair of r with the same
magnitude but opposite sign. This corresponds to the
positive or negative propagation direction of the modes.

After the eigenvalue I’ and its corresponding eigenvec-
tor VI are found from (23), the current il can be found
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from (20). The most convenient form for il can be ob-
tained by repeating the same derivation from (20) to (23)
but eliminating VI:

cosh (rAz) . il = D . il (24)I

Substitute (24) into (21), we find:

il = –see h-*(l’Az) “ C “ VI. (25)

Finally, the incident and reflected impulses al and bl can
be obtained from (14).

V. 3-D DISCONTINUITY

A 3-D discontinuity can always be divided into twol
areas: the region containing the discontinuity and the
transmission line structures attached to the discontinuity
as the input and output ports. The calculation of the scat-
tering parameters for the 3-D discontinuity with the
FDTLM involves the following steps. First the intrinsic
scattering matrices for the discontinuity region and the
transmission lines attached to it are determined. Then the
2-D analysis is performed for the connected transmission
lines to find-the field distribution for the propagating
modes. One of the ports is then excited by its modal field.
From the reflected and the transmitted field amplitudes the
scattering parameters can be found. In the following, de-
tails of this procedure are given for a two-port disconti-
nuity problem.

The two-port structure in Fig. 4. may be broken up into
three sub-structures: the discontinuity region and the two
semi-infinity waveguides attached as input and output
ports. First the intrinsic scattering matrices for each of
these sub-structures are to be determined. The intrinsic
scattering matrix for the discontinuity region can be read-
ily obtained from its scattering matrix and connection ma-
trix as shown in (10). However, for the semi-infinite
waveguides, the calculation of the intrinsic scattering
matrices is more involved. The general calculation pro-
cedure and the mathematical expressions presented in the
previous sections can not be applied directly in this case,
since the space involved is infinitely extended in
z-direction. In this case, the exterior branches are located
in the cross-section of the waveguide pointing in propa-
gation direction and the incident and reflected impulses at
these exterior branches are related by the intrinsic scat-
tering matrix. To distinguish this case from the general
case of scattering in all directions, the intrinsic scattering
matrix will be referred to as the reflection matrix R of the
semi-infinite waveguide.

Matrix R can be constructed from the modes of the
waveguide by taking a slice of the guide and then finding
its intrinsic scattering matrix M. As described in the pre-
vious section, all the modes of the waveguide can be ob-
tained from M. Assuming there are N pairs of solutions
andai, bi(i=l,2, ”.” , N) are the incident and reflected
impulses of the modes, which propagate along the posi-
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Fig. 4. Subdivision of a two-port waveguide discontinuity.

tive z-axis, then an arbitrary wave can be expanded as

N

a = ~ ~i~i (26)iel

(27)

where a and b are the incident and reflected impulses of
this wave. In matrix ~otation, this equation reads as

a = [ai] “ [A] (28)

b = [bi] . [A] (29)

where [ai] and [bi] are the matrices with the i th column
being the vector ai and bi, respectively. [A] is the vector
containing all the coefficients Ai. Eliminating [A] in (28)
and (29), establishes the relationship between a and b:

b = [bi] . [al]-l “ a. (30)

Thus, the reflection coefficient matrix R for a semi-infin-
ity waveguide is given by:

R = [bi] “ [ai]-l. (31)

After the intrinsic scattering matrix of the discontinuity
region and the reflection matrices of the two semi-infinity
waveguides are found, the problem is reduced to a matrix
algebra problem as illustrated in Fig. 4. In the disconti-
nuity region, al and al are the incident impulses while bl
and b2 are the reflected impulses. Both are related by:

bl=mll”al+mlz-az
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Fig. 5. Equivalent strncture for a two-port waveguide discontinuity.

For port 2, b2 is the incident impulse while a2 is the re-
flected impulse, hence:

Thus, from (32) and (33), the following relationship is
obtained:

bl=R~”al (34)

b2=T’. al (35)

where T’ and R; are given by

R~=mll+m12. Rz” T’ (36)

T’ = (1 – m22 . Rz)-l “ m21. (37)

This shows that the problem has now been simplified to a
one-port as illustrated in Fig. 5. The reflection coefficient
R; contains the total effects of the discontinuity region as
well as the characteristics of port 2. Assuming the exci-
tation is incident at port 1, then the total wave al and bl
is the sum of two parts:

al = alo + af (38)

bl = blo + b{ (39)

where a lo, blo are the initial incident waves (excitation)
and a;, b;, are the reflected waves. a lo is related to blo by

blo = R, “ ale. (40)

For the reflected waves a;, and b!, the propagation direc-
tion is in the negative z-axis. Therefore, in this case the
reflected wave b[ will become the incident impulse and
a! the reflected ,impulse. Both are also related by the re-
flection matrix RI:

af=Rl”bj (41)

b! is then calculated from (34), (38), and (41)

b{ = (1 – R; - –RI)-l “ (R; – Rl) “ ale. (42)

The total transmitted wave is calculated from (35):

b2=T’”al =T’. (R1”b~+ ale) (43)

The reflected and transmitted waves given by (41)-(44),
are the total fields containing all the modes of the corre-

sponding waveguides. The field components of a specific
mode can be extracted by use of (28) or (29), that is

[A] = [ai]-’ “ a (45)

or

[A] = [hi]-’ “ b (46)

where a and b are the total fields given by (4 1)–(44). Nor-
malizing the modal field ai and bi such that the complex
power carried in each of the modes equals 1, the scatter-
ing parameters for the first mode at port 1 and port 2 will
be

A ~ and A ~ are the first elements of (45) with a substituted
by the element of the total reflected and transmitted wave,

VI. NUMERICALRESULTS

To validate the accuracy of the results obtained from
this new approach; a variety of different structures are cal-
culated and compared with data from other numerical
techniques. The reference planes for the scattering param-
eters are located in the 3-D discontinuity plane, because
this new approach can take into account all the modes
excited at the discontinuity. This is an additional advan-
tageous feature of this method. It allows to minimize the
volume of the space to be discretized and therefore re-
duces the required computer resources. The phase delay
due to the propagation among the nodes is fully taken into
account in the algorithm as indicated in (8). The layout
of the mesh and its size is only limited by the spatial field
resolution. The hybrid symmetric condensed node with
non-uniformed mesh layout is used throughout the fol-
lowing analysis.

The diakoptics technique has been implemented in the
algorithm to enhance the computational efficiency. For
this the entire structure is broken up into sub-structures
which are characterized independently and then cascaded
with the other sub-structures. Consider a structure which
is broken up into two sub-structures, 1 and 2. For sub-
structure 1, (12) is rewritten as follows:

where v ~a, u ~a are the incident and reflected impulses at
the branches connecting sub-structure 1 and 2, while v ~
and v { are the incident and reflected impulses at other
exterior branches of the sub-structure 1. Similarly for sub-
structure 2:

where v ~aand v ja are the incident and reflected impulses
at the branches connecting sub-structure 1 and 2, while
v ~ and v ~ are the incident and reflected impulses at the
exterior branches of sub-structure 2. Apparently, the in-
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Fig. 6. Frequency -dependent S-parameters of thestep junction oftwodi-
electrics in a rectangular waveguide. The FDTLM results agree perfectly
with the analytical solutions.

—.
g-

Frequency (GHz)

Fig. 7. The reflection coefficient for a dielectric slab of finite length in a
rectangular waveguide.

cident impulses for sub-structure 1 at the connection
branches are the reflected impulses for sub-structure 2 and
vice versus:

via = V;a, v~a = V;a (50)

From (48)-(50) the intrinsic scattering matrix for the en-
tire structure is obtained:
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Fig. 8, The reflection coefficient for a dielectric block of finite length in a
rectangular waveguide.

where: “

S22 = S;Z + S;l “ (1 – S[l “ S;,)-’ “ S;, “ S;~. (52)

The first round of calculations is made for the scattering
parameters of the step junction of two dielectrics in a rect-
angular waveguide. In this case the exact analytical so-
lutions are available from

z, – z, 2=
S1l “ --=--,z~+ z, ‘12=4+21

S21 = SIX, S22= — SI1. (53)

21 and 22 in (53) are the characteristic impedances of the
two waveguides. The conservation of energy requires

[* JT+212+=11s1,12+ RE (S,, – S,,)

t (54)

For a lossless medium, the criteria above is simplified to

1s,,12 + Is,zlz = 1 (55)

The results in Fig. 6 have been checked to satisfy (55),
which was always within 0.1 %. Fig. 6 illustrates the per-
fect agreement between analytical results and the FDTLM
simulation.

More complicated structures are analyzed in Figs. 7 and
8. The reflection coefficient S 11 is calculated for a di-
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Fig. 9. Frequency-dependent S-parameters of the microstrip step-in-width.
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Fig. 10. Frequency-dependent S-parameters of the microstrip step-in-
width

electric slab loaded waveguide of finite length in Fig. 7
and for a dielectric block of finite length in Fig. 8. In both
cases, the TLM results are in excellent agreement with
other methods and measurements [18], [19]. The typical
computation time on a SUN SPARC II station in these
cases is less than a second per frequency sample. Figs. 9
and 10 show calculated S-parameters for the micro strip
step discontinuity with WI/H = 1.0, W2/wl = 2.0 and
WI/H = 1.0, W2/wl = 4.0, respectively. The strip thick-

0,01 I I I I I

5 10 15 20 25 30
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5

Fig. 11. Frequency-dependent S-parameters for a microstrip gap discon-
tinuity.
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Fig, 12. Frequency-dependent S-parameters of the CPW step-in-width

ness is assumed to be zero and the dielectric constant is
Er = 10. The results are quite flat over a large frequency
range and again in good agreement with the results of
Koster and Jansen [20]. The typical computation time in
this case is approximately 20 seconds for one frequency
sample point. Fig. 11 shows the calculated S-parameters
for the microstrip gap discontinuity. Also here the
FDTLM results are in good agreement with measure-
ments [21].
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12.9).

In Fig. 12 a CPW double step discontinuity is analyzed
and compared with simulation results from [22]. In this
case, the reference planes of the two transmission lines
which connect through the discontinuity are located within
the discontinuity plane. The symmetry of the structure is
utilized and an artificial magnetic wall is placed at the
center of the structure. Therefore, only half of the struc-
ture is simulated. The number of nodes in the x-axis is
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Fig. 14. Frequency dependent reflection coefficients for a superconducting
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100 ~m, r = 3 ~m, e, = 12.9).

chosen as 8 and the number of nodes in y-axis as 7. In-
creasing the number of nodes from 8 x 7 to 10 x 7 only
changes the results by less than 2 percent. There are slight
differences towards higher frequencies which can be re-
duced by increasing the number of nodes. But there is also
a possibility that, due to the relative convergence problem
in the mode matching method used in [22] those results
are a few percent off.

The flexibility of the FDTLM method is further dem-
onstrated by calculating the S-parameters for CPW air-
bridges. There are basically two types of airbridges used:
The more common type is the one which bridges over the
center conductor and connects both groundplane (Type
A); the less frequently used airbridge bridges over the
groundplane and connects the centerconductor (Type B).
Fig. 13 shows a comparison between the S1~of both types
of airbridges with different metallization thickness, t = O
and t = 3 mm. First of all it was found, that the finite
metallization thickness has only a marginal effect on the
airbridge reflection coefficient. Secondly, the type B air-
bridge reacts slightly more sensitive to variation in the
metallization thickness. This result is not surprising since
the airbridge behaves basically as a parasitic capacitor
connecting in parallel with the main transmission line.
One part of the capacitance comes from the parallel plane .
capacitor between the bottom plane of the airbridge and
the top plane of the center conductor. This part is almost
independent from the thickness of the metallization. The
other part results from the fringing fields at the ends of
the air bridge and the gap of the CPW. This part of the
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capacitance will increase with the metallization thickness,
but plays only a minor role.

High-TC superconductors are of increasing interest to
reduce losses in miniaturized transmission lines. In the
following we investigate the effect of superconducting
airbridges on the CPW transmission characteristics. Su-
perconductors can be incorporated in the calculations via
the two-fluid model, in which a superconductor is de-
scribed as a dielectric medium with the complex conduc-
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Fig. 16. Reflection coefficients for CPW airbridges versus the length of
the airbridges at frequency 40 GHz (w = 15 ym, s = 10 pm, b = 3 pm,
d=l+15ym, c=O, h= 100pm, t=3~m, c, =12.9).

tivity [23]:

~sup er = on (T/ TC)4 – j(l – (T/TC)4)/@~ for T < TC

(56)

where u. is the normal conductivity, T is the absolute tem-
perature, and ~. is the zero-temperature penetration depth.
Fig. 14 shows the reflection coefficients for a supercon-
ductor airbridge. In comparison to normal conductor con-
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ductilities, the effect of superconductors on the
S-parameters is quite small and the differences betweerl
the results of superconductors and perfect conductors are
negligible.

Figs. 15 and 16 illustrate the effect of airbridge height
and length on S11. Both parameters seem to have an op-
posite effect on the phase in the different airbridges, while
the tendency on \SI~I is the same. Finally, Fig. 17 dem-
onstrates that there is very little interaction between the
location of a CPW discontinuity relative to the position
of an airbirdge of type A. The change in the phase is due
to the change in the length of the transmission line be-
tween both discontinuities.

VII. CONCLUSIONS

This paper has presented a new frequency-domain TLM
method which operates in the frequency-domain while us-
ing the same transmission line network as the conven-
tional TLM method. The novel sinusoidal impulse train
excitation retains the form of an impulse at any time step,
while the envelop of the impulse sequence contains the
information of the structure. This allows to transfom the
conventional TLM solution procedure directly into the
frequency-domain. Then frequency-domain techniques,
such as the diakoptics technique, can be easily imple-
mented in this new algorithm to enhance its computational
efficiency. To improve the computational efficiency of this
method even further, another new concept, the intrinsic
scattering matrix, is introduced. This matrix relates the

2217

reflected and incident impulses at the exterior branches of
the structure and translates the originally electromagnetic
field problem into a “matrix algebra problem, to which lin-
ear algebra theory can be readily applied.

A variety of structures have been analyzed in order to
check the accuracy of the new method and excellent
agreement has been observed in most cases. For the first
time in literature, superconductor airbridges have been in-
vestigated.
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